If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25y^2-252y+160=0
a = 25; b = -252; c = +160;
Δ = b2-4ac
Δ = -2522-4·25·160
Δ = 47504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{47504}=\sqrt{16*2969}=\sqrt{16}*\sqrt{2969}=4\sqrt{2969}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-252)-4\sqrt{2969}}{2*25}=\frac{252-4\sqrt{2969}}{50} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-252)+4\sqrt{2969}}{2*25}=\frac{252+4\sqrt{2969}}{50} $
| -3-2=5x-1 | | 3/7x=6/36 | | 7w=9w-12 | | -4+2x+-1x=2 | | -3-2=5x-2 | | 2x+5(3x-11)=-4 | | -7(x-15)=-13 | | -6(x-5)-(-7x-1)=-1 | | 15=a÷3+6 | | H(t)=-16t^2+40t+72 | | -6(p+2)=-66 | | (4x+12)-(x-1)=64 | | -4(-10+10v)+10v=0 | | -13=n/14 | | -5/3r-2r=11/9 | | 8x-48=9x+144 | | 4.4x-16.8=-3.6 | | 1x-2x=3x-5 | | 5y-8+2y+1=180 | | 3(g-1)=g+5 | | 645.45=39x+99.45 | | 18=4(x-5) | | 18=4(x-5( | | 5x+8-3x=6 | | 9x-6-7x=-2 | | 9.5+x=14.2 | | 8(s+2)=48 | | 2w3=12+2w7 | | 2(4x-1)=3(2x+3) | | 8(9x-21)=1 | | 7x+2=12+15 | | 3/4n+18=51 |